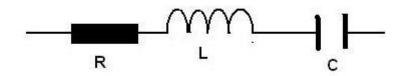

F6KJS-F6FTC-FORMATION RADIOAMATEUR

QCM14

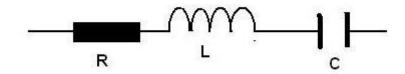
R = 10 ohms L = 10 mH $C = 10 \mu \text{H}$ Quelle est la fréquence à la résonance ?


- a) 504 Hz
- b) 10 ohms
- c) 10 kHz
- d) 100 kHz

Question 1 : Bonne réponse ?

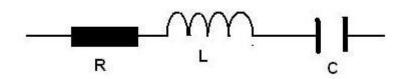
O_aO_bO_cO_d

R = 10 ohms L = 10 mH $C = 10 \mu \text{H}$ Impédance à la résonance ?


- a) 504 Hz
- b) 10 ohms
- c) 10 kHz
- d) 100 kHz

Question 2 : Bonne réponse ?

$$R = 10 \text{ ohms}$$
 $L = 10 \text{ mH}$ $C = 10 \mu \text{H}$


Facteur de qualité?

- a) 3
- b) 4
- c) 30
- d) 40

Question 3 : Bonne réponse ?

 $\circ_a \circ_b \circ_c \circ_d$

La fréquence de résonance est 10 kHz et le facteur de qualité 50.

La bande passante à -3dB est ?

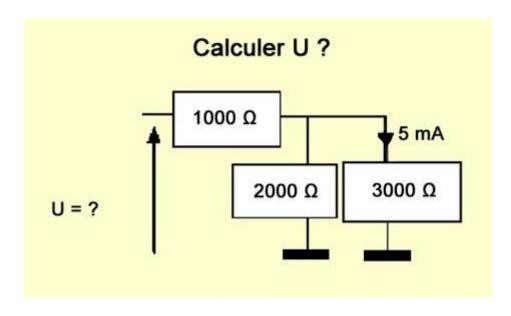
- a)100 kHz
- b)100 Mhz
- c) 10 kHz
- d) 200 Hz

Question 4 : Bonne réponse

 \circ a \circ b \circ c \circ d

La puissance d'entrée dans un amplificateur est 20W, la puissance de sortie 80 W

Le gain est :


- a) 10 dB
- b) 6 dB
- c) 9 dB
- d) 3 dB

Question 5 : Bonne réponse ?

o_a o_b o_c o_d

- a) 7,5V
- b) 12,5V

c) 15V d) 27,5V
Question 6: Bonne réponse? a b c d
Un amplificateur de gain +9dB est suivi de 20 m d'un cable d'atténuation -15dB/100m
Le gain global est :
a) +9dB b) +12 dB c)+6dB d) -6dB
Question 7: Bonne réponse : ? C a C b C c d
Quelle est la quantité d'électricité délivrée par un générateur que débite 0,2A pendant 1 minute a) 12C b) 0,2C c) 0,2A d) 60s
Question 8 : Bonne réponse : ? C a C b C c d
I

La puissance de sortie d'un atténuateur de -23dB est 1 mW, quelle est la puissance d'entrée

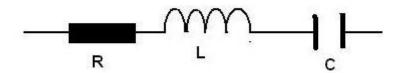
a) -23 dB

b) 1 mW c) 0,2W d) on ne peut pas la calculer
Question 9 : Bonne réponse : ? C a C b C C d
Au secondaire d'un transformateur, la tension est 16V efficace et l'intensité débitée est 2A
En supposant qu'il soit parfait, quelle est la puissance au primaire ?
a) 53W b) 32W c) 32V d) 2A
Question 10 : Bonne réponse : ?
\circ a \circ b \circ c \circ d
La puissance d'entrée d'un amplificateur de gain +30dB est 1mW
la puissance de sortie est :
a) 1 W b) 10W c) 10mW d) 0,1 W
Question 11 : Bonne réponse : ? O a O b O c O d

La fréquence d'un signal est 20 Hz, la période T est : a) 20s b) 10s c) 0,005s d) 0,05s
Question 12 : Bonne réponse : ? a b c c d
On place en série une résistance de 1 ohm, un condensateur de 1nF et une bobine de 1 µH Quelle est la bande passante à -3dB ?
a) environ 160 kHz b) environ 5.035 MHz c) environ 500 kHz d) environ 0.5 MHz
Question 13: Bonne réponse : ? a b c d
Les couleurs d'une résistance sont marron - bleu - vert elle vaut ?
a) 1,6 kohms b) 1,6Mohms c) 150kohms d) 15 Mohms
Question 14: Bonne réponse : ? O a O b O c O d

Dans une résistance marron-noir-noir passe un courant de 100mA,

la tension à ses bornes est : ?


- a) 1V
- b) 10V
- c) 100V
- d) 0.1V

Question 15 : Bonne réponse : ?

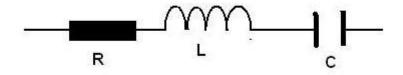
O a O b O c O d

F6KJS-F6FTC-FORMATION RADIOAMATEUR

QCM14_ correction

 $R=10 \ ohms \quad L{=}\ 10 \ mH \qquad \quad C{=}\ 10 \mu H$

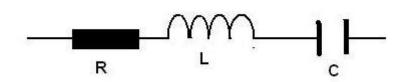
Quelle est la fréquence à la résonance ?


- a) 504 Hz
- b) 10 ohms
- c) 10 kHz
- d) 100 kHz

Formule de Thomson : f=1/(2 x pi x racine carrée de (LC)) = 503.57 Hz

Question 1 : Bonne réponse : a

R = 10 ohms L = 10 mH $C = 10 \mu\text{H}$


Impédance à la résonance ?

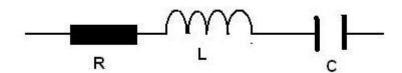
- a) 504 Hz
- b) 10 ohms
- c) 10 kHz
- d) 100 kHz

Question 2 : Bonne réponse : b

A la résonance, l'impédance d'un circuit RLC série est R

R = 10 ohms L = 10 mH $C = 10 \mu \text{H}$

Facteur de qualité?


- a) 3
- b) 4
- c) 30
- d) 40

Question 3 : Bonne réponse : a

Q = racine (L/C) / R

La fréquence de résonance est 10 kHz et le facteur de qualité 50.

La bande passante à -3dB est?

- a)100 kHz
- b)100 Mhz
- c) 10 kHz
- d) 200 Hz

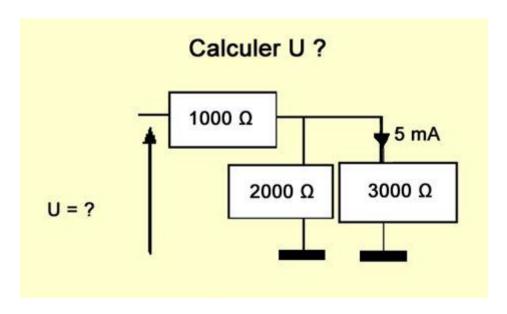
Question 4 : Bonne réponse : d

$$B = Fo / Q = 10\ 000/\ 50 = 200\ Hz$$

La puissance d'entrée dans un amplificateur est 20W, la puissance de sortie 80 W

Le gain est:

- a) 10 dB
- b) 6 dB
- c) 9 dB
- d) 3 dB


$$20W$$
-----($+3dB$)----- $+3dB$)----- $80W$

Donc 6dB

Question 5 : Bonne réponse b

- a) 7,5V
- b)12,5V
- c) 15V
- d) 27,5V

Question 6: Bonne réponse d

Tension aux bornes de la résistance de 3000 ohms : $U = RI = 3000 \times 0.005 = 15V$

La résistance de 3000 ohms et celle de 2000 ohms sont en parallèle donc la tension aux bornes de la résistance de 2000 ohms est 15V

L'intensité qui la traverse est I = U/R = 0,0075A (7,5 mA) L'intensité qui sort de la résistance de 1000 ohms est donc 5 + 7,5 = 12,5 mA

La tension à ses bornes est donc $U=RI=1000 \times 0.0125=12,5V$

Ce montage est un diviseur de tension donc U = 15V + 12,5V = 27,5V

Un amplificateur de gain +9dB est suivi de 20 m d'un câble d'atténuation -15dB/100m

Le gain global est:

```
a) +9dB
```

b)+12 dB

c)+6dB

d) -6dB

Question 7 : Bonne réponse c

-15 dB aux 100 m c'est donc -3dB pour 20m Gain global : (+6dB) + (-3dB) = +3dB

Quelle est la quantité d'électricité délivrée par un générateur que débite 0,2A pendant 1 minute

a) 12C

b) 0,2C

c) 0.2A

d) 60s

Question 8 : Bonne réponse : a

$$Q = It = 0.2 \times 60 = 12C$$

La puissance de sortie d'un atténuateur de -23dB est 1 mW, quelle est la puissance d'entrée

- a) -23 dB
- b) 1 mW

- c) 0,2W
- d) on ne peut pas la calculer

$$-23 dB = (-10 dB) + (-10 dB) + (-3 dB)$$

$$/10 \qquad /10 \qquad /2 \text{ correspond à une division}$$

$$par 200$$

La puissance d'entrée est donc 200 mW soit 0,2W

Question 9 : Bonne réponse : c

Au secondaire d'un transformateur, la tension est 16V efficace et l'intensité débitée est 2A

En supposant qu'il soit parfait, quelle est la puissance au primaire ?

- a) 53W
- b) 32W
- c) 32V
- d) 2A

Question 10 : Bonne réponse : b

Transformateur parfait n: Puissance au primaire = puissance au secondaire.

La puissance au secondaire est $P=UI = 16 \times 2 = 32W$

La puissance d'entrée d'un amplificateur de gain +30dB est 1mW

la puissance de sortie est :

```
a) 1 W
```

- b) 10W
- c) 10mW
- d) 0,1 W

30 dB correspond à une multiplication par 1000 de la puissance d'entrée donc 1000 x 1 mW = 100mW = 1W

```
Question 11 : Bonne réponse : a
```

La fréquence d'un signal est 20 Hz, la période T est :

- a) 20s
- b) 10s
- c) 0,005s
- d) 0,05s

Question 12 : Bonne réponse : d

T = 1/f = 1/20 = 0.05

On place en série une résistance de 1 ohm, un condensateur de 1nF et une bobine de 1 µH Quelle est la bande passante à -3dB ?

- a) environ 160 kHz
- b) environ 5.035 MHz
- c) environ 500 kHz
- d) environ 0.5 MHz

Question 13 : Bonne réponse : a

Il faut connaître la fréquence de résonance

formule de Thomson : fo=1/(2 x pi x racine carrée de (LC))

f = 5,035 Mhz

Il faut connaître le facteur de qualité

Q = racine (L/C) / R = 31,6

```
Mhz soit 159kHz
```

Bande passante à -3dB B = fo/Q = 5,035/31,6 = 0.159

Les couleurs d'une résistance sont marron - bleu - vert elle vaut?

- a) 1,6 kohms
- b) 1.6 Mohms
- c) 150 kohms
- d) 15 Mohms

```
Question 14 : Bonne réponse : b
```

```
marron: 1 bleu: 6 vert: 5
```

1600000 ohms = 1,6 Mohms

Dans une résistance marron-noir-noir passe un courant de 100mA

la tension à ses bornes est : ?

- a) 1V
- b) 10V
- c) 100V
- d) 0.1V

```
Question 15 : Bonne réponse : a
marron - noir - noir = 10 ohms
U = RI = 10 \times 0, 1 = 1V
```