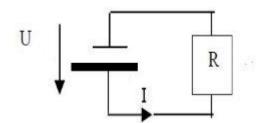
F6KJS-F6FTC-FORMATION RADIOAMATEUR

QCM3

15 questions sont proposées, en fin de QCM cliquez sur le bouton - Résultats-


Une correction sera proposée si nécessaire. Unit3: Quelle valeur correspond 0,001 a) 10⁻³ b) 10⁻¹ c) 10-6 d) aucune de ces valeurs Question 1 : Bonne réponse ? o a o b o c o d Série3 : résistance équivalente à R1 = 10Ω et R2 = 1,20k Ω ? a) 1,2 kΩ b) 1,21kΩ R2 R1 c) 11,2kΩ d) $1,3k\Omega$ Question 2 : Bonne réponse ? $\circ_a \circ_b \circ_c \circ_d$

Q_elec3 Le coulomb est une unité a) de tension b) d'intensité c) d'énergie d) de quantité d'électricité
Question 3 : Bonne réponse ? a b c d
Puis3: Puissance dissipée par une résistance de 27 kΩ et parcourue par un courant de 10 mA? a) 27 mW b) 7,29 W c) 27 W d) 2,7 W Question 4: Bonne réponse? a b c c d
Ohm3 Calculer la tension aux bornes de la pile sachant que I=50 mA et R=100 Ω. a) 500 mV b) 2,5 V c) 50 V
Question 5: Bonne réponse? a b c d

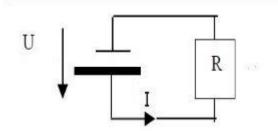
resis3 : Quelle est la valeur de la résistance ?

que U= 6V et I = 6mA

- a) 10 Ω
- b) 100Ω
- c) 1000Ω
- d) 1mΩ

Question 6 : Bonne réponse ?

c_a c_b c_c c_d

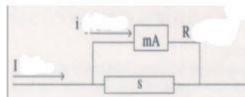


intens3 : Quelle l'intensité qui traverse de la résistance ?

Sachant que U= 120 V et R= 120 Ω

- a) 10 mA
- b) 100mA
- c) 1 A
- d) 1mA

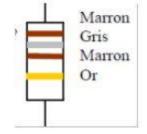
Question 7 : Bonne réponse ?


 $c_a c_b c_c c_d$

mes cont3

Un milliampèremètre (mA) de calibre 1mA et de résistance interne R=20Ω est utilisé pour fabriquer un ampèremètre de calibre 1A. La valeur du shunt s est de ?

- a) 0.02Ω
- b) 0,03Ω
- c) 20Ω
- d) $2 k\Omega$

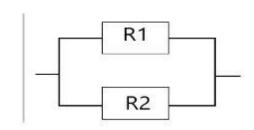

Question 8 : Bonne réponse ?

o_a o_b o_c o_d

coul res3

Valeur de la résistance ?

- a) 18Ω
- b) 280Ω
- c) 28Ω
- d) 180Ω

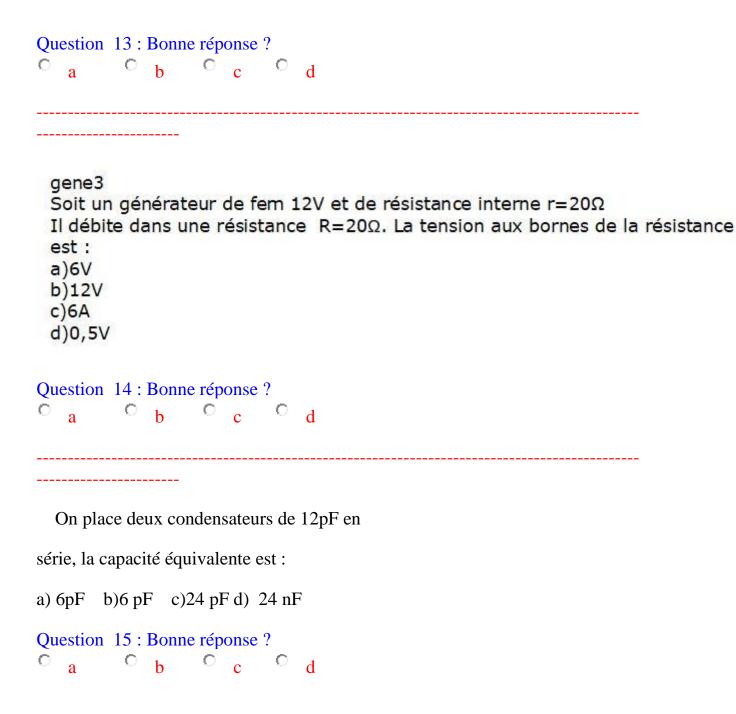


Question 9 : Bonne réponse ?

 $\circ_a \circ_b \circ_c \circ_d$

deriv3 : R1 = 10Ω R1 = 10Ω Calculer la résistance R équivalente

- a) 5 Ω
- b) 20 Ω
- c) 10 Ω
- d) 5 k Ω


Question 10 : Bonne réponse ?

 $\circ_a \circ_b \circ_c \circ_d$

Ener3: Formule fausse? a) W = Ptb) W = UItc) W = P/td) t = W/PQuestion 11 : Bonne réponse ? $\circ_a \circ_b \circ_c \circ_d$ Formules3: Quelles sont les formules exactes? Formule 1: $U^2 = P \times R$ Formule 2:Q=I/tFormule 3: $P = U^2 / R$ Formule 4: $R = P \times I^2$ a) 1 et 3 b) 1, 2 et 3 c) 3 et 4 d) 1 et 4 Question 12 : Bonne réponse ? $\circ_a \circ_b \circ_c \circ_d$

Mes3 : Avec quoi mesure-t-on une tension de 12 volts aux bornes d'une résistance de 2 M Ω ?

- a) un galvanomètre
- b) un wattmètre
- c) un ampèremètre
- d) un voltmètre

QCM3_correction

Unit3: Quelle valeur correspond 0,001 a) 10 ⁻³ b) 10 ⁻¹ c) 10 ⁻⁶ d) aucune de ces valeurs	
Question 1 : Bonne réponse : a Un millième	
Série3 : résistance équivalente à R1 = 10Ω e	$t R2 = 1,20k\Omega$?
a) 1,2 kΩ b) 1,21kΩ c) 11,2kΩ d) 1,3kΩ	
Question 2 : Bonne réponse : b	
En série les valeurs s'ajoutent 10Ω + $1200~\Omega$ 1,21k Ω	= 1210 Ω =
Q_elec3 Le coulomb est une unité a) de tension b) d'intensité c) d'énergie d) de quantité d'électricité	
Question 3 : Bonne réponse : d	

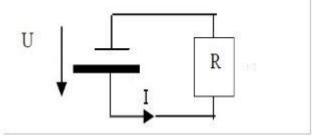
Puis3 : Puissance dissipée par une résistance de 27 $k\Omega$ et parcourue par un courant de 10 mA ?

- a) 27 mW
- b) 7,29 W
- c) 27 W
- d) 2,7 W

Question 4: Bonne réponse d

$$P=RI^2 = 27000 \times 0.01^2 = 2.7 \text{ W}$$

On peut aussi calculer U = RI = 270V puis P = UI = 2.7W



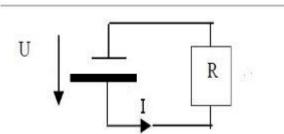
Ohm3 Calculer la tension aux bornes de la pile sachant que

I=50 mA et R=100 Ω .

- a) 500 mV
- b) 2,5 V
- c) 50 V
- d) 5 V

Question 5 : Bonne réponse : d

Loi d'ohm : $U = RI = 100 \times 0.05 = 5V$



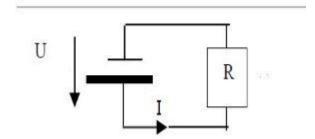
resis3 : Quelle est la valeur de la résistance ?

que U = 6V et I = 6mA

- a) 10 Ω
- b) 100Ω
- c) 1000Ω
- d) 1mΩ

Question 6: Bonne réponse: c

Réponse : Loi d'ohm : $R = U/I = 6 : 0,006 = 1000\Omega$

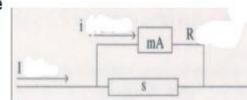


intens3 : Quelle l'intensité qui traverse de la résistance ?

Sachant que U= 120 V et R= 120 Ω

- a) 10 mA
- b) 100mA
- c) 1 A
- d) 1mA

Question 7 : Bonne réponse : c


Réponse : Loi d'ohm : I = U/R = 120 : 120 = 1A

mes cont3

Un milliampèremètre (mA) de calibre 1mA et de résistance interne $R=20\Omega$ est utilisé pour fabriquer un ampèremètre de calibre 1A. La valeur du shunt s est de ?

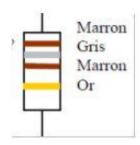
- a) 0.02Ω
- b) 0.03Ω
- c) 20Ω
- d) $2 k\Omega$

Question 8 : Bonne réponse : a

La tension aux bornes du galvanomètre est $U = RI = 20 \times 0,001 = 0,02V$

La tension aux bornes du shunt s est donc de 0,02V, l'intensité qui le traverse est 1A - 0,001A = 0,999A

La valeur du shunt est donc U/I = 0.02/0.999 = 0.02 ohms

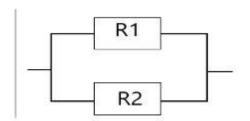


coul_res3

Valeur de la résistance ?

- a) 18Ω
- b) 280Ω
- c) 28Ω
- d) 180Ω

Question 9 : Bonne réponse : d


marron: 1 gris: 8 marron: 1 (1 zéro) donc 180

deriv3 : R1 = 10 Ω R1 = 10 Ω Calculer la résistance R équivalente

- a) 5 Ω
- b) 20 Ω
- c) 10 Ω
- d) 5 kΩ

Question 10 : Bonne réponse : a

Méthode 1 : les résistances sont égales donc Req=R1/2 = 5

Méthode 2 : Req = $(R1 \times R2)/(R1 + R2) = (10 \times 10)/20 = 5$

Ener3: Formule fausse?

- a) W = Pt
- b) W = UIt
- c) W = P/t
- d) t = W/P

```
Question 11 : Bonne réponse : c
W = P x t et non P / t
   Formules3: Quelles sont les formules exactes?
   Formule 1: U^2 = P \times R
   Formule 2:Q=I/t
   Formule 3: P = U^2 / R
   Formule 4: R = P \times I^2
   a) 1 et 3
   b) 1, 2 et 3
   c) 3 et 4
   d) 1 et 4
Question 12 : Bonne réponse : a
Q = I x t P = RI<sup>2</sup> (attention, seul I est au carré)
  Mes3 : Avec quoi mesure-t-on une tension de 12 volts aux bornes d'une
  résistance de 2 M\Omega ?
  a) un galvanomètre
  b) un wattmètre
  c) un ampèremètre
  d) un voltmètre
Question 13: Bonne réponse: d
```

```
gene3 Soit un générateur de fem 12V et de résistance interne r=20\Omega Il débite dans une résistance R=20\Omega. La tension aux bornes de la résistance est : a)6V b)12V c)6A
```

d)0,5V

Question 14: Bonne réponse: c

La résistance équivalente à r et R en série est : 40 ohms

L'intensité du courant qui traverse le circuit est U/Req = 12/40 = 0.3A

La tension aux bornes de R est donc $U = RI = 20 \times 0.3 = 6V$

On place deux condensateurs de 12pF en série, la capacité équivalente est :

a) 6pF b) 16 pF c)24 pF d) 24 nF

Question 15 : Bonne réponse : a

 $(12 \times 12) / (12 + 12) = 6 pF$