Révision 2

Cours : série - dérivation - mesures en courant continu

Attention, bien lire ce qui est <u>demandé</u>, regarder les réponses, <u>éliminer les réponses manifestement fausses s'il y en a.</u>
Ne répondre qu'aux questions dont vous êtes sûrs de la réponse

Question 1:

Les couleurs d'une résistance sont gris – rouge – orange Sa valeur en ohms est :

- a) 82
- b) 8k2
- c) 82k
- d) 820k

Question 2:

R1 : orange orange rouge et la résistance équivalente à R1 et R2 est $\frac{R1}{R1}$ $\frac{R2}{R2}$ $\frac{R1}{R2}$

- a) 140 Ω
- b)1400 Ω
- c)14k
- d) 140k

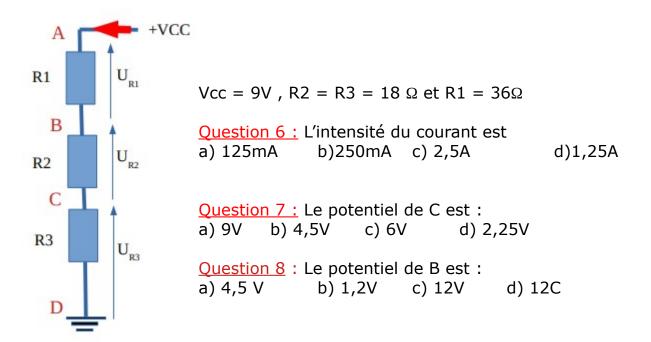
Question 3:

2 résistances de 20 ; 200 Ω sont en parallèle, la résistance équivalente vaut ?

- a) 180Ω
- b) 90 Ω
- c) environ 18 Ω
- d) 0.18Ω environ

Question 4:

3 résistances de 200 ; 300 et 400 Ω sont en parallèle, la résistance équivalente est :


- a) 44,5 Ω environ
- b) 92 Ω environ
- c) 2 k
- d) 600 k

Question 5:

d) 12Ω

U=12V ; U2 = 6V et I = 1A calculer R1 a) 6Ω b) 8Ω c) 10Ω

Observez le dessin ci-dessous et répondez aux questions 6;7 et 8

Question 9:

Formule(s) fausse(s) ?

$$1 - U = RI$$

$$\hat{2} - P = UI$$

$$3 - W = Pt$$

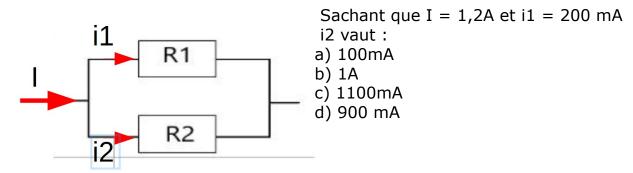
$$R = I/P$$

- a) formule 1 seulement
- b) formule 2 seulement
- c) formule 3 seulement
- d) formule 4 seulement

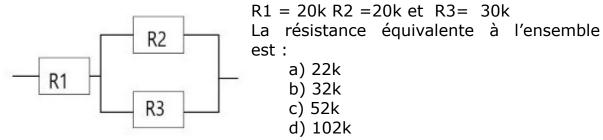
Question 10:

Dans un circuit simple comprenant un générateur, une résistance, je mesure l'intensité du courant.

J'ajoute une résistance en série avec la précédente, l'intensité


- a) augmente
- b) diminue
- c) tout dépend de la résistance que je vais mettre
- d) elle sera divisée par 3

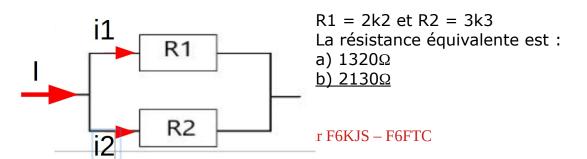
Question 11:


Une circuit en dérivation constitue

- a) un diviseur de tension
- b) un multiplicateur de tension
- c) un diviseur d'intensité
- d) un multiplicateur d'intensité

Question 12:

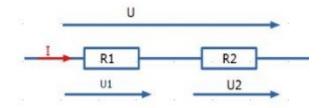
Question 13:



Question 14:

Quelle est l'affirmation vraie ?

- a) Un galvanomètre mesure une capacité
- b) Un ampèremètre se place en dérivation aux bornes d'un générateur
- c) 4k7 c'est jaune violet rouge
- d) Un wattmètre mesure une énergie


Question 15:

3

<u>c) 5k5</u> <u>d) 8k25</u>

Question 16:

$$U = 12V I = 2A U2 = 4V$$

R1 vaut?

- a) 12Ω
- b) 8 Ω
- c) 4 Ω
- d) 100 k Ω

Question 17:

Pour fabriquer une résistance fictive de 75Ω , je ne possède que des résistances de 1500Ω .

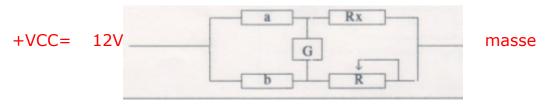
Quelle est la bonne affirmation ?

- a) Je place 50 résistances de 1500Ω en série
- b) Je place 20 résistances de 1500Ω en dérivation
- c) Je place 20 résistances de 1000Ω en série
- b) Je place 50 résistances de 1000Ω en dérivation

Question 18:

3 résistances R1 = 150Ω R1 = 250Ω et R3 = 350Ω sont en dérivation.

La résistance équivalente est :


- a) 74 Ω environ
- b) 750Ω
- c) 129Ω
- d) 50Ω

Question 19:

Quelle est l'affirmation vraie?

- a) Pour transformer un galvanomètre en voltmètre, il faut placer une résistance en parallèle
- b) La résistance interne d'un ampèremètre doit être la plus grande possible.
- c) La résistance interne d'un voltmètre doit être la plus faible possible
- d) Un pont de Wheatstone permet de mesurer une résistance inconnue

Question 20:

Sachant que a= $10~\Omega$; b = $20~\Omega$ R = $95~\Omega$, et Rx = $52~\Omega$ Le pont n'est pas équilibré, quelle est la tension aux bornes de G ?

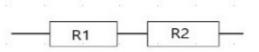
- a)12V
- b) 6V
- c) 4,3V environ
- d) 0,15 V environ

Révision 2 - Correction

Cours : série - dérivation - mesures en courant continu

Question 1:

Les couleurs d'une résistance sont gris – rouge – orange Sa valeur en ohms est :


- a) 82
- b) 8k2
- c) 82k
- d) 820k

gris: 8 rouge; 2 orange 3 (ajouter 3 zéros

donc 82 000 Ω ou 82 $k\Omega$

Question 2:

R1 : orange orange rouge et la résistance équivalente à R1 et R2 est $4,7 \text{ k}\Omega$. R2 vaut

- a) 140 Ω
- b)1400 Ω
- c)14k
- d) 140k

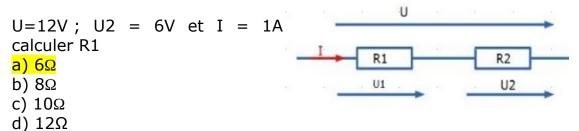
orange – orange – rouge vaut 3,3 k Ω R2 vaut 1,4k Ω soit 1400 Ω

Question 3:

2 résistances de 20 ; 200 Ω sont en parallèle, la résistance équivalente vaut ?

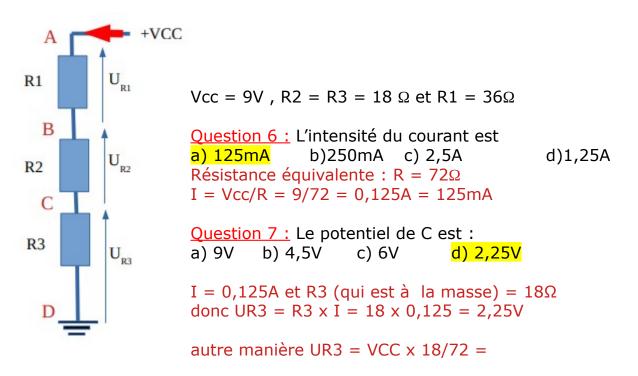
- a) 180Ω
- b) 90 Ω
- c) environ 18Ω
- d) 0.18Ω environ

 $R = R1xR2/(R1 + R2) = 20 \times 200/(20+200) = 18,18$


Question 4:

3 résistances de 200 ; 300 et 400 Ω sont en parallèle, la résistance équivalente est :

- a) 44,5 Ω environ
- b) 92 Ω environ
- c) 2 k
- d) 600 k


$$1/R = 1/200 + 1/300 + 1/400 = 0,0108$$

 $1/0,0108 = 92,3$

Question 5:

U = 12V et U2 = 6V donc U1 = 6V (les résistances sont en série) U1 = 6V et I = 1A donc $R1 = U1/I = 6/1 = 6\Omega$

Observez le dessin ci-dessous et répondez aux questions 6;7 et 8

Question 8 : Le potentiel de B est :

a) 4,5 V

b) 1,2V

c) 12V

d) 12C

UR3 = 2,25V et R2 = R3 donc UR2 = 2,25V Le potentiel de B est donc 4,5V

Autre méthode : B est au « milieu » du pont donc à la moitié de la tension VCC soit 4,5V

Question 9:

Formule(s) fausse(s)?

$$1 - U = RI$$

$$2 - P = UI$$
 $3 - W = Pt$ $R = I/P$

$$3 - W = Pt$$

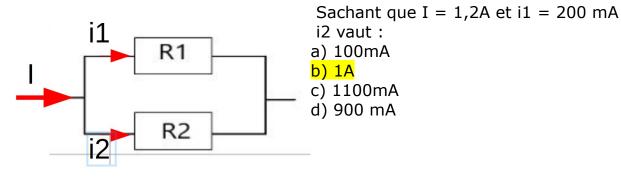
$$R = I/F$$

- a) formule 1 seulement
- b) formule 2 seulement
- c) formule 3 seulement
- d) formule 4 seulement

Question 10:

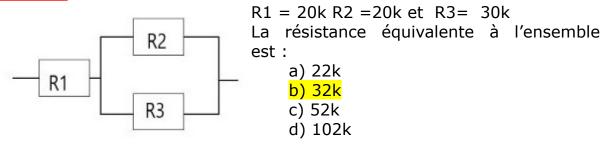
Dans un circuit simple comprenant un générateur, une résistance, je mesure l'intensité du courant.

J'ajoute une résistance en série avec la précédente, l'intensité


- a) augmente
- b) diminue
- c) tout dépend de la résistance que je vais mettre
- d) elle sera divisée par 3

Question 11:

Une circuit en dérivation constitue

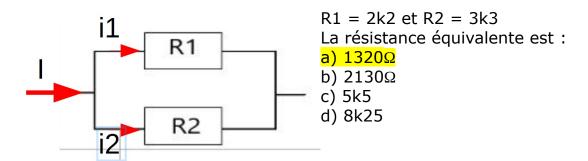

- a) un diviseur de tension
- b) un multiplicateur de tension
- c) un diviseur d'intensité
- d) un multiplicateur d'intensité

Question 12:

$$I = i1 + i2$$

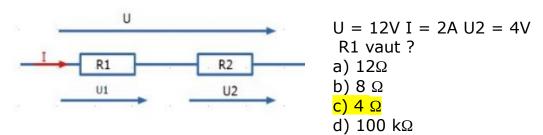
 $I = 1,2 -0,2 = 1A$

Question 13:


Résistance équivalente à R2 et R3 : $R = 20x30/(20+30) = 12 k\Omega$ R et R1 sont en série donc Req=R1 + R = 20+12=32k

Ouestion 14:

Quelle est l'affirmation vraie ?


- a) Un galvanomètre mesure une capacité
- b) Un ampèremètre se place en dérivation aux bornes d'un générateur
- c) 4k7 c'est jaune violet rouge
- d) Un wattmètre mesure une énergie

Question 15:

Req=
$$2.2 \times 3.3/(2.2+3.3) = 1.32k = 1320\Omega$$

Question 16:

La tension aux bornes de R1 est : 12 - 4 = 8VUR1 = 8V et I = 2A donc R1 = $8/2 = 4\Omega$

Question 17:

Pour fabriquer une résistance fictive de 75Ω , je ne possède que des résistances de 1500Ω .

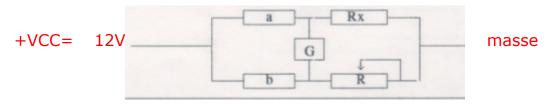
Ouelle est la bonne affirmation ?

- a) Je place 50 résistances de 1500Ω en série
- b) Je place 20 résistances de 1500Ω en dérivation
- c) Je place 20 résistances de 1000Ω en série
- b) Je place 50 résistances de 1000Ω en dérivation

Question 18:

```
3 résistances R1 = 150\Omega R1 = 250\Omega et R3 = 350\Omega sont en dérivation. La résistance équivalente est :
```

- a) 74 Ω environ
- b) 750Ω
- c) 129Ω
- d) 50 Ω


```
1/150 + 1/250 + 1/350 = 0,0135
1/0,0135 = 74,2
```

Question 19:

Quelle est l'affirmation vraie ?

- a) Pour transformer un galvanomètre en voltmètre, il faut placer une résistance en parallèle
- b) La résistance interne d'un ampèremètre doit être la plus grande possible.
- c) La résistance interne d'un voltmètre doit être la plus faible possible
- d) Un pont de Wheatstone permet de mesurer une résistance inconnue

Question 20:

Sachant que $a=10~\Omega$; $b=20~\Omega$ R = 95 Ω , et Rx = 52 Ω Le pont n'est pas équilibré, quelle est la tension aux bornes de G ?

- a)12V
- b) 6V
- c) 4,3V environ
- d) 0,15 V environ

Potentiel du point commun entre a et $Rx = 12 \times 52/(52+10) = 10,06V$ Potentiel du point commun entre b et $R = 12 \times 95/(95+20) = 9,91V$ La différence de potentiel entre ces deux points est : 10,06 - 9,91=0,15